Cuts for Conic Mixed-Integer Programming
نویسندگان
چکیده
A conic integer program is an integer programming problem with conic constraints. Conic integer programming has important applications in finance, engineering, statistical learning, and probabilistic integer programming. Here we study mixed-integer sets defined by second-order conic constraints. We describe general-purpose conic mixed-integer rounding cuts based on polyhedral conic substructures of second-order conic sets. These cuts can be readily incorporated in branch-and-bound algorithms that solve continuous conic programming relaxations at the nodes of the search tree. Our preliminary computational experiments with the new cuts show that they are quite effective in reducing the integrality gap of continuous relaxations of conic mixed-integer programs.
منابع مشابه
Forthcoming in Mathematical Programming CONIC MIXED-INTEGER ROUNDING CUTS
A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures ...
متن کاملConic mixed-integer rounding cuts
A conic integer program is an integer programming problem with conic constraints.Manyproblems infinance, engineering, statistical learning, andprobabilistic optimization aremodeled using conic constraints. Herewe studymixed-integer sets definedby second-order conic constraints.We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second...
متن کاملSplit cuts and extended formulations for Mixed Integer Conic Quadratic Programming
We study split cuts and extended formulations for Mixed Integer Conic Quadratic Programming (MICQP) and their relation to Conic Mixed Integer Rounding (CMIR) cuts. We show that CMIR is a linear split cut for the polyhedral portion of an extended formulation of a quadratic set and it can be weaker than the nonlinear split cut of the same quadratic set. However, we also show that families of CMIR...
متن کاملMixed integer programming with a class of nonlinear convex constraints
We study solution approaches to a class of mixed-integer nonlinear programming problems that arise from recent developments in risk-averse stochastic optimization and contain second-order and p-order cone programming as special cases. We explore possible applications of some of the solution techniques that have been successfully used in mixed-integer conic programming and show how they can be g...
متن کاملIntersection Cuts for Mixed Integer Conic Quadratic Sets
Balas introduced intersection cuts for mixed integer linear sets. Intersection cuts are given by closed form formulas and form an important class of cuts for solving mixed integer linear programs. In this paper we introduce an extension of intersection cuts to mixed integer conic quadratic sets. We identify the formula for the conic quadratic intersection cut by formulating a system of polynomi...
متن کامل